Effect of coactivation of tongue protrusor and retractor muscles on pharyngeal lumen and airflow in sleep apnea patients.
نویسندگان
چکیده
The present study evaluated the effect of coactivation of tongue protrusors and retractors on pharyngeal patency in patients with obstructive sleep apnea. The effect of genioglossus (GG), hyoglossus (HG), and coactivation of both on nasal pressure (Pn):flow relationships was evaluated in a sleep study (SlS, n = 7) and during a propofol anesthesia study (AnS, n = 7). GG was stimulated with sublingual surface electrodes in SlS and with intramuscular electrodes in AnS, while HG was stimulated with surface electrodes in both groups. In the AnS, the cross-sectional area (CSA):Pn relationships was measured with a pharyngoscope to estimate velopharyngeal compliance . In the SlS, surface stimulation of GG had no effect on the critical pressure (Pcrit), HG increased Pcrit from 2.8 +/- 1.7 to 3.7 +/- 1.6 cmH(2)O, but coactivation lowered Pcrit to 0.2 +/- 1.9 cmH(2)O (P < 0.01 for both). In the AnS, intramuscular stimulation of GG lowered Pcrit from 2.6 +/- 1.3 to 1.0 +/- 2.8 cmH(2)O, HG increased Pcrit to 6.2 +/- 2.5 cmH(2)O (P < 0.01), and coactivation had a similar effect to that of GG (Pcrit = 1.2 +/- 2.4 cmH(2)O, P < 0.05). None of the interventions affected significantly velopharyngeal compliance. We conclude that the beneficial effect of coactivation depends on the pattern of GG fiber recruitment: although surface stimulation of GG failed to protrude the tongue, it prevented the occlusive effect of the retractor, thereby improving pharyngeal patency during coactivation. Stimulation of deeper GG fibers with intramuscular electrodes enlarged the pharynx, and coactivation had no additive effect.
منابع مشابه
MRI study of pharyngeal airway changes during stimulation of the hypoglossal nerve branches in rats.
The medial branch (Med) of the hypoglossal nerve innervates the tongue protrudor muscles, whereas the lateral branch (Lat) innervates tongue retractor muscles. Our previous finding that pharyngeal airflow increased during either selective Med stimulation or whole hypoglossal nerve (WHL) stimulation (coactivation of protrudor and retractor muscles) led us to examine how WHL, Med, or Lat stimulat...
متن کاملAsynchrony of lingual muscle recruitment during sleep in obstructive sleep apnea.
Pharyngeal collapsibility during sleep increases primarily due to decline in dilator muscle activity. However, genioglossus EMG is known to increase during apneas and hypopneas, usually without reversing upper airway obstruction or inspiratory flow limitation. The present study was undertaken to test the hypothesis that intense activation of the genioglossus fails to prevent pharyngeal obstruct...
متن کاملInfluence of tongue muscle contraction and transmural pressure on nasopharyngeal geometry in the rat.
The mammalian pharynx is a hollow muscular tube that participates in ingestion and respiration, and its size, shape, and stiffness can be altered by contraction of skeletal muscles that lie inside or outside of its walls. MRI was used to determine the interaction between pharyngeal pressure and selective stimulation of extrinsic tongue muscles on the shape of the rat nasopharynx. Pressure (-9, ...
متن کاملEffect of genioglossus contraction on pharyngeal lumen and airflow in sleep apnoea patients.
The purpose of the present study was to quantify the mechanical effect of genioglossus stimulation on flow mechanics and pharyngeal cross-sectional area in patients with obstructive sleep apnoea, and to identify variables that determine the magnitude of the respiratory effect of tongue protrusion. The pressure/flow and pressure/cross-sectional area relationships of the velo- and oropharynx were...
متن کاملInfluence of tongue muscle contraction and dynamic airway pressure on velopharyngeal volume in the rat.
The mammalian pharynx is a collapsible tube that narrows during inspiration as transmural pressure becomes negative. The velopharynx (VP), which lies posterior to the soft palate, is considered to be one of the most collapsible pharyngeal regions. I tested the hypothesis that negative transmural pressure would narrow the VP, and that electrical stimulation of extrinsic tongue muscles would reve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2007